Raman Microscope
   HOME

TheInfoList



OR:

The Raman microscope is a laser-based
microscopic The microscopic scale () is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded as the scale be ...
device used to perform Raman spectroscopy.''Microscopical techniques in the use of the molecular optics laser examiner Raman microprobe'', by M. E. Andersen, R. Z. Muggli, Analytical Chemistry, 1981, 53 (12), pp 1772–177

/ref> The term MOLE (molecular optics laser examiner) is used to refer to the Raman-based microprobe. The technique used is named after
C. V. Raman Sir Chandrasekhara Venkata Raman (; 7 November 188821 November 1970) was an Indian physicist known for his work in the field of light scattering. Using a spectrograph that he developed, he and his student K. S. Krishnan discovered that when ...
, who discovered the scattering properties in liquids.


Configuration

The Raman microscope begins with a standard
optical microscope The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microsc ...
, and adds an excitation
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fi ...
, laser rejection filters, a
spectrometer A spectrometer () is a scientific instrument used to separate and measure spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomenon where the ...
or
monochromator A monochromator is an optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input. The name is from the Greek roots ''mono-'', "s ...
, and an optical sensitive
detector A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
such as a
charge-coupled device A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a ...
(CCD), or photomultiplier tube, (PMT). Traditionally Raman microscopy was used to measure the Raman spectrum of a point on a sample, more recently the technique has been extended to implement Raman spectroscopy for direct
chemical imaging Chemical imaging (as quantitative – ''chemical mapping'') is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures cont ...
over the whole field of view on a 3D sample.


Imaging modes

In ''direct imaging'', the whole field of view is examined for scattering over a small range of wavenumbers (Raman shifts). For instance, a wavenumber characteristic for cholesterol could be used to record the distribution of cholesterol within a cell culture. The other approach is ''
hyperspectral imaging Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifyi ...
'' or ''chemical imaging'', in which thousands of Raman spectra are acquired from all over the field of view. The data can then be used to generate images showing the location and amount of different components. Taking the cell culture example, a hyperspectral image could show the distribution of cholesterol, as well as proteins, nucleic acids, and fatty acids. Sophisticated signal- and image-processing techniques can be used to ignore the presence of water, culture media, buffers, and other interference.


Resolution

Raman microscopy, and in particular
confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a s ...
, can reach down to sub-micrometer lateral spatial resolution. Because a Raman microscope is a
diffraction-limited system The resolution of an optical imaging system a microscope, telescope, or camera can be limited by factors such as imperfections in the lenses or misalignment. However, there is a principal limit to the resolution of any optical system, due to t ...
, its spatial resolution depends on the wavelength of light and the numerical aperture of the focusing element. In confocal Raman microscopy, the diameter of the confocal aperture is an additional factor. As a rule of thumb, the lateral spatial resolution can reach approximately the laser wavelength when using air objective lenses, while oil or water immersion objectives can provide lateral resolutions of around half the laser wavelength. This means that when operated in the visible to near-infrared range, a Raman microscope can achieve lateral resolutions of approx. 1 µm down to 250 nm, while the depth resolution (if not limited by the optical penetration depth of the sample) can range from 1-6 µm with the smallest confocal pinhole aperture to 10s of micrometers when operated without a confocal pinhole. Since the objective lenses of microscopes focus the laser beam down to the micrometer range, the resulting photon flux is much higher than achieved in conventional Raman setups. This has the added effect of increased
photobleaching In optics, photobleaching (sometimes termed fading) is the photochemical alteration of a dye or a fluorophore molecule such that it is permanently unable to fluoresce. This is caused by cleaving of covalent bonds or non-specific reactions between ...
of molecules emitting interfering fluorescence. However, the high photon flux can also cause sample degradation, and thus, for each type of sample, the laser wavelength and laser power have to be carefully selected.


Raman imaging

Another tool that is becoming more popular is global Raman imaging. This technique is being used for the characterization of large scale devices, mapping of different compounds and dynamics study. It has already been used for the characterization of
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
layers, J-aggregate, J-aggregated dyes inside carbon nanotubes and multiple other 2D materials such as MoS2 and WSe2. Since the excitation beam is dispersed over the whole field of view, those measurements can be done without damaging the sample. By using Raman microspectroscopy, in vivo time- and space-resolved Raman spectra of microscopic regions of samples can be measured. As a result, the fluorescence of water, media, and buffers can be removed. Consequently, it is suitable to examine proteins, cells and organelles. Raman microscopy for biological and medical specimens generally uses near-infrared (NIR) lasers (785 nm
diodes A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diode ...
and 1064 nm Nd:YAG are especially common). This reduces the risk of damaging the specimen by applying higher energy wavelengths. However, the intensity of NIR Raman scattering is low (owing to the ω4 dependence of Raman scattering intensity), and most detectors require very long collection times. Recently, more sensitive detectors have become available, making the technique better suited to general use. Raman microscopy of inorganic specimens, such as rocks, ceramics and polymers, can use a broader range of excitation wavelengths. A related technique,
tip-enhanced Raman spectroscopy Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS) that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible ''via'' TERS, with routine demons ...
, can produce high-resolution hyperspectral images of single molecules and DNA.


Correlative Raman imaging

Confocal Raman microscopy can be combined with numerous other microscopy techniques. By using different methods and correlating the data, the user attains a more comprehensive understanding of the sample. Common examples of correlative microscopy techniques are Raman-AFM, Raman-
SNOM Snom Technology GmbH is a German company which manufactures Voice over Internet Protocol (VoIP) telephones, based on the IETF standard Session Initiation Protocol (SIP). Snom's products are targeted at the small- to medium-sized business secto ...
, and Raman- SEM. Correlative SEM-Raman imaging is the integration of a confocal Raman microscope into an SEM chamber which allows correlative imaging of several techniques, such as SE, BSE, EDX,
EBSD Electron backscatter diffraction (EBSD) is a scanning electron microscope–based microstructural-crystallography, crystallographic characterization technique commonly used in the study of crystalline or crystallite, polycrystalline materials. T ...
, EBIC, CL, AFM. The sample is placed in the vacuum chamber of the electron microscope. Both analysis methods are then performed automatically at the same sample location. The obtained SEM and Raman images can then be superimposed. Moreover, adding a
focused ion beam Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a s ...
(FIB) on the chamber allows removal of the material and therefore 3D imaging of the sample. Low-vacuum mode allows analysis on biological and non-conductive samples.


Biological Applications

By using Raman microspectroscopy, ''in vivo'' time- and space-resolved Raman spectra of microscopic regions of samples can be measured. Sampling is non-destructive and water, media, and buffers typically do not interfere with the analysis. Consequently, ''in vivo'' time- and space-resolved Raman spectroscopy is suitable to examine proteins,
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s and
organs In biology, an organ is a collection of tissues joined in a structural unit to serve a common function. In the hierarchy of life, an organ lies between tissue and an organ system. Tissues are formed from same type cells to act together in a f ...
. In the field of microbiology, confocal Raman microspectroscopy has been used to map intracellular distributions of macromolecules, such as proteins, polysaccharides, and nucleic acids and polymeric inclusions, such as poly-β-hydroxybutyric acid and polyphosphates in bacteria and sterols in microalgae. Combining stable isotopic probing (SIP) experiments with confocal Raman microspectroscopy has permitted determination of assimilation rates of 13C and 15N-substrates as well as D2O by individual bacterial cells.Madigan, M.T., Bender, K.S., Buckley, D.H., Sattley, W.M. and Stahl, D.A. (2018) Brock Biology of Microorganisms, Pearson Publ., NY, NY, 1022 pp.


See also

*
Raman scattering Raman scattering or the Raman effect () is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a ...
*
Coherent Raman Scattering Microscopy Coherent Raman scattering (CRS) microscopy is a multi-photon microscopy technique based on Raman-active vibrational modes of molecules. The two major techniques in CRS microscopy are stimulated Raman scattering (SRS) and coherent anti-Stokes Ram ...
* Scanning electron microscope *
Tip-enhanced Raman spectroscopy Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS) that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible ''via'' TERS, with routine demons ...


References

{{optical microscopy, state=autocollapse Raman scattering Microscopes Cell imaging Laboratory equipment Microscopy Optical microscopy